ai
February 8, 2026Evaluation Frameworks for Agentic Systems
title: "Evaluation Frameworks for Agentic Systems" description: "Research on measuring agent performance, quality assessment, and evaluation methodologies" date: 2026-02-06 topics: [evaluation, metrics, assessment, benchmarking] sources: 0 status: initial
Evaluation Frameworks for Agentic Systems
Overview
Evaluation of AI agents in software development requires multi-dimensional assessment beyond traditional code metrics. This research covers evaluation frameworks, benchmarks, and quality assessment methodologies for agentic systems.
Dimensions of Evaluation
1. Task Completion Evaluation
Functional Correctness
typescriptinterface CorrectnessEvaluation { // Does the output meet requirements? requirementCoverage: number; // % of requirements addressed acceptanceCriteriaPass: boolean; // All AC met? edgeCaseHandling: number; // Edge cases covered // Validation methods testPassRate: number; // Automated tests staticAnalysisScore: number; // Lint, type check runtimeValidation: boolean; // Does it run? }
Semantic Correctness
- Business logic alignment
- Domain appropriateness
- User intent satisfaction
- Contextual relevance
2. Code Quality Evaluation
Traditional Metrics
typescriptinterface CodeQualityMetrics { // Complexity cyclomaticComplexity: number; cognitiveComplexity: number; linesOfCode: number; // Maintainability codeDuplication: number; // % duplicated testCoverage: number; // Line/branch coverage documentationCoverage: number; // % documented // Reliability errorHandlingCoverage: number; // % paths with handling typeSafety: number; // Type coverage nullSafety: number; // Null check coverage }
AI-Specific Quality Indicators
typescriptinterface AgentCodeQuality { // Generation quality hallucinationRate: number; // Fake APIs/imports repetitionRate: number; // Copy-paste code coherenceScore: number; // Logical consistency // Context utilization requirementAdherence: number; // Stuck to spec? constraintSatisfaction: number; // Respected limits? patternConsistency: number; // Followed conventions? }
3. Process Efficiency Evaluation
Resource Utilization
typescriptinterface EfficiencyMetrics { // Time timeToCompletion: number; // Wall clock time activeProcessingTime: number; // CPU time waitTime: number; // I/O blocking // Cost apiCalls: number; // LLM calls tokensConsumed: number; // Input + output estimatedCost: number; // $ spent // Iterations attempts: number; // Retry count correctionCycles: number; // Fix iterations humanInterventions: number; // Times human needed }
Comparative Efficiency
- vs human baseline (time/cost)
- vs previous agent versions
- vs industry benchmarks
4. Safety & Reliability Evaluation
Robustness Testing
typescriptinterface RobustnessEvaluation { // Input variations adversarialRobustness: number; // Handles bad inputs? ambiguityHandling: number; // Clarifies vs assumes? // Failure modes gracefulDegradation: boolean; // Fails safely? errorRecoveryRate: number; // Self-fixes errors? // Security injectionResistance: number; // Resists prompt injection secretExposure: boolean; // Leaked credentials? }
Evaluation Methodologies
1. Automated Benchmarking
Static Benchmark Suites
typescriptinterface BenchmarkSuite { name: string; tasks: BenchmarkTask[]; async run(agent: Agent): Promise<BenchmarkResult> { const results = []; for (const task of this.tasks) { const start = Date.now(); const output = await agent.execute(task.input); const duration = Date.now() - start; results.push({ task: task.id, output, expected: task.expected, score: task.evaluate(output), duration }); } return this.aggregate(results); } }
HumanEval-style Coding Benchmarks
- Function completion tasks
- Bug fixing challenges
- Refactoring exercises
- Documentation generation
2. Human Evaluation
Expert Review Process
typescriptinterface ExpertReview { reviewer: Expert; dimensions: ReviewDimension[]; async review(output: AgentOutput): Promise<ReviewScore> { const scores = {}; for (const dim of this.dimensions) { scores[dim.name] = await this.evaluator.rate( output, dim.criteria, dim.rubric ); } return { scores, overall: this.weightedAverage(scores), feedback: this.generateFeedback(scores) }; } }
Review Dimensions:
- Correctness (functional, semantic)
- Quality (maintainability, readability)
- Efficiency (resource usage, performance)
- Safety (security, robustness)
- Appropriateness (fits context, constraints)
3. A/B Testing
Comparative Evaluation
typescriptinterface ABTest { control: AgentVersion; treatment: AgentVersion; async run(tasks: Task[], n: number): Promise<ABResult> { const results = { control: [], treatment: [] }; for (const task of tasks) { for (let i = 0; i < n; i++) { results.control.push( await this.runTask(this.control, task) ); results.treatment.push( await this.runTask(this.treatment, task) ); } } return this.statisticalAnalysis(results); } }
4. Longitudinal Evaluation
Performance Over Time
typescriptinterface LongitudinalStudy { agent: Agent; startDate: Date; async track(metrics: Metric[]): Promise<TrendAnalysis> { const data = await this.collectHistoricalData(); return { trends: this.calculateTrends(data), regressions: this.detectRegressions(data), improvements: this.identifyImprovements(data), volatility: this.calculateVolatility(data) }; } }
Metrics to Track:
- Success rate trends
- Cost per task trends
- Quality score trends
- Error pattern evolution
Evaluation Frameworks
1. Rubric-Based Scoring
Multi-Dimensional Rubric
typescriptinterface EvaluationRubric { dimensions: { name: string; weight: number; criteria: Criterion[]; }[]; evaluate(output: AgentOutput): Score { const scores = this.dimensions.map(d => ({ dimension: d.name, score: d.criteria.reduce((sum, c) => sum + c.evaluate(output), 0 ) / d.criteria.length, weight: d.weight })); return { breakdown: scores, overall: this.weightedAverage(scores) }; } }
2. Reference-Based Evaluation
Golden Dataset Comparison
typescriptinterface ReferenceEvaluation { async evaluateAgainstReference( output: AgentOutput, reference: ReferenceOutput ): Promise<SimilarityScore> { return { functional: this.compareBehavior(output, reference), structural: this.compareStructure(output, reference), semantic: await this.embeddingsSimilarity(output, reference) }; } }
3. Task-Specific Metrics
Code Generation
- Compilation success rate
- Test pass rate
- Runtime performance
- Memory efficiency
Code Review
- True positive rate (real issues caught)
- False positive rate (noise)
- Actionability (clear fixes suggested)
- Severity accuracy
Testing
- Coverage increase
- Bug detection rate
- Test quality (mutation score)
- Flakiness rate
Benchmark Datasets
1. SWE-Bench Style
Real GitHub issues with:
- Issue description
- Repository state
- Expected fix
- Validation tests
2. HumanEval Extended
Function-level coding tasks:
- Docstring to implementation
- Multiple language support
- Difficulty levels
3. Domain-Specific
- Frontend component generation
- API endpoint implementation
- Database schema design
- DevOps pipeline creation
Evaluation Infrastructure
1. Continuous Evaluation
typescriptinterface ContinuousEvaluator { async evaluateCommit(commit: Commit): Promise<EvalResult> { // Run benchmarks const benchmarkResults = await this.runBenchmarks(commit); // Compare to baseline const comparison = await this.compareToBaseline( commit, this.getBaseline() ); // Check for regressions const regressions = this.detectRegressions(comparison); return { benchmarkResults, comparison, regressions, recommendation: this.generateRecommendation(regressions) }; } }
2. Evaluation Dashboard
Key Visualizations:
- Success rate over time
- Quality score distributions
- Cost per task trends
- Regression heatmaps
- Agent comparison matrices
3. Feedback Loop Integration
typescriptinterface EvalFeedbackLoop { async incorporateFeedback( evaluation: EvaluationResult, feedback: HumanFeedback ): Promise<void> { // Update evaluation weights this.adjustWeights(feedback.disagreements); // Add to training data this.addToTrainingSet(evaluation, feedback); // Update rubrics this.refineRubrics(feedback.suggestions); // Trigger re-evaluation if needed if (feedback.significant) { await this.reEvaluateRecent(); } } }
Open Questions
- How to evaluate creativity and innovation?
- What's the right balance of automated vs human eval?
- How to handle evaluation of subjective qualities?
- Standardized benchmarks for agent comparisons?
- Evaluation cost vs comprehensiveness tradeoffs?