Agentic Loops and Orchestration Patterns
title: "Agentic Loops and Orchestration Patterns" description: "Research on AI agent workflow patterns, feedback loops, and orchestration strategies" date: 2026-02-06 topics: [agentic-ai, orchestration, workflows] sources: 5 status: initial
Agentic Loops and Orchestration Patterns
Executive Summary
Agentic workflows represent a paradigm shift from single-prompt AI interactions to autonomous, multi-step processes where AI agents act as orchestrators and integrators. Key patterns include feedback loops for continuous improvement and human-in-the-loop integration for critical decisions.
Key Concepts
1. The Agent Loop Pattern
The fundamental agent loop consists of:
- Perceive: Gather context and inputs
- Reason: Analyze and plan next steps
- Act: Execute using available tools
- Learn: Update state based on outcomes
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ PERCEIVE│───▶│ REASON │───▶│ ACT │───▶│ LEARN │
└─────────┘ └─────────┘ └─────────┘ └────┬────┘
▲───────────────────────────────────────────────┘
2. Orchestration Patterns
Agent as Orchestrator
- Acts as glue unifying workflows
- Accesses tools and integrates outputs
- Reduces human intervention needed
- Source: McKinsey, "One year of agentic AI"
Multi-Agent Collaboration
- Multiple specialized agents working together
- Workflow orchestrators managing handoffs
- Collaborative systems for complex tasks
- Source: AWS Prescriptive Guidance
3. Feedback Mechanisms
Continuous Improvement Loop
Execute → Measure → Analyze → Adjust → Execute
Human-in-the-Loop (HITL)
- Facilitates agent decision-making
- Steers agent output
- Critical for high-stakes decisions
- Source: IBM, "What are Agentic Workflows?"
Automated Feedback
- Captures performance metrics
- Evolves agent configurations
- Enables self-improvement
- Source: McKinsey, "Seizing the agentic AI advantage"
Implementation Patterns
Pattern 1: Tool-Augmented Agent
typescriptinterface AgentLoop { context: Context; tools: Tool[]; llm: LLM; async run(input: string): Promise<Result> { const plan = await this.llm.plan(input, this.context); for (const step of plan.steps) { const tool = this.selectTool(step); const result = await tool.execute(step.params); this.context.addObservation(result); } return this.llm.synthesize(this.context); } }
Pattern 2: Nested Agent Hierarchy
typescriptinterface Orchestrator { subAgents: Agent[]; async delegate(task: Task): Promise<Result> { const agent = this.selectAgent(task.type); const subtasks = await this.decompose(task); const results = await Promise.all( subtasks.map(t => agent.execute(t)) ); return this.integrate(results); } }
Pattern 3: Reflection Loop
typescriptinterface ReflectiveAgent { async executeWithReflection(task: Task): Promise<Result> { let attempt = 0; let result = await this.execute(task); while (!this.validate(result) && attempt < MAX_RETRIES) { const reflection = await this.reflect(result.errors); result = await this.execute(task, reflection.feedback); attempt++; } return result; } }
Observability Considerations
Metrics to Track
- Loop iterations per task
- Tool usage patterns
- Error rates by step
- Latency per phase
- Cost per execution
Logging Strategy
- Structured events for each loop phase
- Context snapshots at key points
- Tool call traces
- Decision rationales
Reliability Patterns
1. Circuit Breaker
Prevent infinite loops by tracking:
- Iteration count
- Error frequency
- Cost accumulation
- Time elapsed
2. Checkpointing
Save state periodically to enable:
- Recovery from failures
- Resume after interruption
- Audit trail creation
3. Graceful Degradation
When agent fails:
- Fallback to simpler approach
- Escalate to human
- Return partial results
Sources
-
McKinsey, "One year of agentic AI: Six lessons from the people doing the work" (Sept 2025)
-
McKinsey, "Seizing the agentic AI advantage" (June 2025)
-
IBM, "What are Agentic Workflows?" (Nov 2025)
-
AWS Prescriptive Guidance, "Agentic AI patterns and workflows"
-
Microsoft Azure, "AI Agent Orchestration Patterns"
Gaps and Opportunities
- Standardized agent loop metrics
- Interoperability between agent frameworks
- Cost optimization strategies
- Long-term memory management
- Multi-agent coordination protocols