6 min
architecture
February 8, 2026

End-to-End SDLC Orchestration


title: "End-to-End SDLC Orchestration" description: "Research on orchestrating the complete software development lifecycle with AI agents" date: 2026-02-06 topics: [sdlc, orchestration, workflows, lifecycle] sources: 0 status: initial

End-to-End SDLC Orchestration

Overview

This research synthesizes findings from previous topics into a comprehensive framework for orchestrating the entire software development lifecycle using AI agents. The goal is a system where human input is minimized to requirements and high-level direction, while agents handle implementation, validation, and deployment.

The Ideal SDLC Flow

Requirements (Human)
       │
       ▼
┌─────────────┐
│   Planning  │──▶ Agent analyzes requirements
│   & Design  │    creates architecture
└──────┬──────┘
       │
       ▼
┌─────────────┐
│Implementation│──▶ Agents write code in parallel
└──────┬──────┘
       │
       ▼
┌─────────────┐
│    Review   │──▶ Automated + human review
└──────┬──────┘
       │
       ▼
┌─────────────┐
│   Testing   │──▶ Automated test execution
└──────┬──────┘
       │
       ▼
┌─────────────┐
│  Deployment │──▶ Automated CI/CD pipeline
└──────┬──────┘
       │
       ▼
┌─────────────┐
│  Monitoring │──▶ Continuous feedback
└──────┬──────┘
       │
       ▼
   Learn & Iterate

Orchestration Architecture

Multi-Agent System Design

typescript
interface SDLCOrchestrator { // Core orchestrator manages the lifecycle agents: { planner: PlanningAgent; // Requirements → Architecture implementer: ImplementationAgent; // Architecture → Code reviewer: ReviewAgent; // Code → Validated Code tester: TestingAgent; // Code → Tested Code deployer: DeploymentAgent; // Code → Deployed Service monitor: MonitoringAgent; // Runtime → Insights }; async executeLifecycle( requirements: Requirements ): Promise<DeployedSystem> { // Phase 1: Planning const design = await this.agents.planner.createDesign(requirements); await this.checkpoint('planning_complete', design); // Phase 2: Implementation const code = await this.agents.implementer.implement(design); await this.checkpoint('implementation_complete', code); // Phase 3: Review const reviewedCode = await this.agents.reviewer.review(code); if (!reviewedCode.approved) { return this.requestChanges(reviewedCode.feedback); } // Phase 4: Testing const testResults = await this.agents.tester.test(reviewedCode); if (!testResults.passed) { return this.fixAndRetry(testResults.failures); } // Phase 5: Deployment const deployment = await this.agents.deployer.deploy(testResults.artifact); // Phase 6: Monitoring await this.agents.monitor.startMonitoring(deployment); return deployment; } }

Agent Communication Patterns

Shared Context Bus

typescript
interface ContextBus { // All agents share context requirements: Requirements; design: ArchitectureDesign; codebase: CodeRepository; testResults: TestResults; deployment: DeploymentInfo; // Event streaming events: EventStream; // Knowledge base learnings: Learning[]; patterns: Pattern[]; }

Message Passing

typescript
interface AgentMessage { from: AgentId; to: AgentId | 'broadcast'; type: 'request' | 'response' | 'notification'; payload: unknown; context: ContextRef; priority: number; }

Phase-by-Phase Breakdown

1. Requirements & Planning Phase

Human Input:

  • High-level requirements
  • Constraints and non-functional requirements
  • Acceptance criteria

Agent Tasks:

typescript
interface PlanningAgent { async analyzeRequirements(reqs: Requirements): Promise<Analysis> { // Break down epics into stories const stories = await this.decompose(reqs); // Estimate complexity const estimates = await this.estimate(stories); // Identify dependencies const dependencies = await this.analyzeDependencies(stories); // Suggest architecture const architecture = await this.designArchitecture(reqs); return { stories, estimates, dependencies, architecture }; } }

Output:

  • Architecture document
  • Implementation plan
  • Risk assessment
  • Resource estimates

2. Implementation Phase

Agent Tasks:

typescript
interface ImplementationAgent { async implement(design: ArchitectureDesign): Promise<Codebase> { // Create implementation plan const plan = await this.createPlan(design); // Spawn worker agents for parallel development const workers = await this.spawnWorkers(plan.modules); // Coordinate development const modules = await Promise.all( workers.map(w => w.implement()) ); // Integration const codebase = await this.integrate(modules); // Self-validation const validation = await this.validate(codebase); if (!validation.passed) { await this.fixIssues(validation.issues); } return codebase; } }

Patterns:

  • Swarm development (parallel implementation)
  • Test-driven generation
  • Incremental refinement
  • Continuous validation

3. Review Phase

Agent Tasks:

typescript
interface ReviewAgent { async review(code: Codebase): Promise<ReviewResult> { // Automated checks const staticAnalysis = await this.runStaticAnalysis(code); const securityScan = await this.runSecurityScan(code); const coverage = await this.checkTestCoverage(code); // AI review const aiReview = await this.aiCodeReview(code); // Risk assessment const risk = this.assessRisk(code, staticAnalysis, aiReview); // Determine review depth if (risk.score > HIGH_THRESHOLD) { // Require human review return { approved: false, requiresHuman: true, feedback: this.compileFeedback(staticAnalysis, aiReview) }; } return { approved: true, issues: aiReview.issues }; } }

Decision Matrix:

Risk LevelAutomatedHuman Required
LowAuto-approveNo
MediumSuggest fixesOptional
HighBlockYes

4. Testing Phase

Agent Tasks:

typescript
interface TestingAgent { async test(code: Codebase): Promise<TestResults> { // Generate tests if needed const generatedTests = await this.generateTests(code); // Select tests based on changes const selectedTests = await this.selectTests(code, generatedTests); // Execute tests const results = await this.executeTests(selectedTests); // Analyze failures if (results.failed.length > 0) { const analysis = await this.analyzeFailures(results.failed); // Auto-fix if possible const fixes = await this.suggestFixes(analysis); if (fixes.confidence > THRESHOLD) { await this.applyFixes(fixes); return this.retest(code); } } return results; } }

5. Deployment Phase

Agent Tasks:

typescript
interface DeploymentAgent { async deploy(artifact: BuildArtifact): Promise<Deployment> { // Validate artifact const validation = await this.validateArtifact(artifact); // Determine deployment strategy const strategy = this.selectStrategy(validation); // Execute deployment const deployment = await this.executeDeployment(artifact, strategy); // Validate deployment const postDeploy = await this.validateDeployment(deployment); if (!postDeploy.healthy) { await this.rollback(deployment); throw new DeploymentError(postDeploy.issues); } return deployment; } }

6. Monitoring Phase

Agent Tasks:

typescript
interface MonitoringAgent { async startMonitoring(deployment: Deployment): Promise<void> { // Set up metrics collection await this.configureMonitoring(deployment); // Start continuous validation this.startSyntheticTests(deployment); // Watch for anomalies this.watchMetrics(deployment, { errorRate: { threshold: 0.01 }, latency: { threshold: 'p95 < 500ms' }, throughput: { threshold: 'baseline - 10%' } }); // Feedback loop this.onAnomaly(async (anomaly) => { const diagnosis = await this.diagnose(anomaly); await this.feedbackToOrchestrator(diagnosis); }); } }

Observability Across SDLC

Unified Telemetry

typescript
interface SDLCTelemetry { // Per-phase metrics planning: { duration: number; iterations: number; humanInterventions: number; }; implementation: { linesOfCode: number; testCoverage: number; complexityScore: number; agentEfficiency: number; }; review: { issuesFound: number; falsePositiveRate: number; humanReviewTime: number; }; testing: { testsRun: number; passRate: number; flakiness: number; executionTime: number; }; deployment: { leadTime: number; successRate: number; rollbackRate: number; }; // Cross-cutting concerns cost: { compute: number; apiCalls: number; humanHours: number; }; quality: { defectEscapeRate: number; technicalDebt: number; maintainability: number; }; }

Audit Trail

typescript
interface SDLCEvent { traceId: string; phase: Phase; timestamp: Date; agent: AgentId; action: string; input: unknown; output: unknown; decisions: Decision[]; feedback: Feedback[]; }

Human Integration Points

Required Human Input

  1. Requirements Definition

    • Business objectives
    • Constraints
    • Acceptance criteria
  2. Architecture Approval

    • High-level design review
    • Technology choices
    • Trade-off decisions
  3. Risk-Based Reviews

    • High-risk changes
    • Security-sensitive code
    • Business-critical features
  4. Final Approval

    • Production deployment
    • Major releases

Optional Human Input

  • Code review feedback
  • Test case suggestions
  • Design refinements
  • Priority adjustments

Reliability and Safety

Circuit Breakers

typescript
interface SafetyControls { // Prevent runaway loops maxIterations: number; maxCost: number; maxTime: number; // Require human approval for productionDeploy: boolean; securityChanges: boolean; breakingChanges: boolean; // Auto-rollback triggers errorRateThreshold: number; latencyThreshold: number; }

Checkpoint System

typescript
interface CheckpointSystem { async checkpoint(phase: Phase, state: State): Promise<void> { // Save state await this.persistState(phase, state); // Validate checkpoint const validation = await this.validateState(state); // Human review if needed if (validation.requiresReview) { await this.requestHumanReview(phase, state); } // Enable rollback this.enableRollback(phase); } }

Research Summary and Gaps

What We Know

  • Individual phases can be automated with AI
  • Multi-agent systems can parallelize work
  • Feedback loops enable continuous improvement
  • Human-in-the-loop is essential for high-stakes decisions

What We Don't Know

  • Optimal agent granularity (many small vs few large)
  • Cost-effectiveness vs traditional development
  • Handling of novel/ambiguous requirements
  • Long-term maintainability of agent-generated code
  • Legal/IP implications of AI-generated code
  • Optimal human-AI collaboration patterns

Next Steps

  1. Prototype minimal viable orchestrator
  2. Measure against baseline (human-only development)
  3. Iterate on agent definitions
  4. Build shared context infrastructure
  5. Define safety constraints