devops
February 8, 2026Observability and Telemetry System Design
Observability and Telemetry System Design
Overview
This document specifies the observability infrastructure for agentic software development systems. It covers metrics, logging, tracing, dashboards, and alerting across all SDLC phases.
Date: 2026-02-06
Scope: End-to-end SDLC observability
Status: Specification
1. Metrics Architecture
1.1 Metric Categories
| Category | Description | Cardinality |
|---|---|---|
| Performance | Timing, latency, throughput | Medium |
| Reliability | Errors, failures, success rates | Low |
| Efficiency | Cost, resource utilization, token usage | Medium |
| Quality | Test results, coverage, defects | Medium |
| Agent | Loop iterations, decisions, learning | High |
| Business | Lead time, deployment frequency | Low |
1.2 Metric Definitions by Phase
Phase 1: Planning & Requirements
| Metric Name | Type | Unit | Description | Labels |
|---|---|---|---|---|
sdlc.planning.duration | Histogram | seconds | Time to complete planning phase | project, complexity |
sdlc.planning.iterations | Counter | count | Number of refinement iterations | project |
sdlc.planning.human_interventions | Counter | count | Times human input was requested | reason |
sdlc.planning.stories_generated | Counter | count | User stories created | project |
sdlc.planning.architecture_options | Gauge | count | Architecture alternatives considered | project |
agent.planner.token_usage | Counter | tokens | LLM tokens consumed | model, operation |
agent.planner.cache_hit_ratio | Gauge | ratio | Cache effectiveness | model |
Phase 2: Implementation
| Metric Name | Type | Unit | Description | Labels |
|---|---|---|---|---|
sdlc.implementation.duration | Histogram | seconds | Time to implement | project, module_count |
sdlc.implementation.lines_written | Counter | lines | Code lines generated | language, module |
sdlc.implementation.lines_modified | Counter | lines | Code lines changed | language, operation |
sdlc.implementation.modules_completed | Counter | count | Modules successfully implemented | project |
sdlc.implementation.parallel_agents | Gauge | count | Concurrent worker agents | project |
agent.implementer.loop_iterations | Counter | count | Agent loop iterations per task | task_type, outcome |
agent.implementer.tool_calls | Counter | count | Tool invocations | tool_name, status |
agent.implementer.tool_latency | Histogram | milliseconds | Tool execution time | tool_name |
agent.implementer.validation_failures | Counter | count | Self-validation failures | failure_type |
agent.implementer.cost_per_task | Histogram | USD | Cost per implementation task | complexity |
code.complexity.cyclomatic | Gauge | score | Cyclomatic complexity | module, function |
code.quality.maintainability_index | Gauge | score | Maintainability score | module |
Phase 3: Code Review
| Metric Name | Type | Unit | Description | Labels |
|---|---|---|---|---|
sdlc.review.duration | Histogram | seconds | Time to complete review | review_type |
sdlc.review.comments_generated | Counter | count | Total review comments | severity, analyzer |
sdlc.review.comments_per_line | Gauge | ratio | Comment density | file |
sdlc.review.false_positive_rate | Gauge | ratio | Incorrect AI suggestions | analyzer |
sdlc.review.human_review_time | Histogram | seconds | Human reviewer time | risk_level |
agent.reviewer.analysis_latency | Histogram | milliseconds | AI review response time | file_size |
agent.reviewer.confidence_score | Gauge | score | AI confidence in findings | file |
agent.reviewer.suggestions_applied | Counter | count | Auto-fixes applied | suggestion_type |
quality.gate.passed | Counter | count | Gate check passes | gate_name |
quality.gate.failed | Counter | count | Gate check failures | gate_name, reason |
Phase 4: Testing
| Metric Name | Type | Unit | Description | Labels |
|---|---|---|---|---|
sdlc.testing.duration | Histogram | seconds | Total test execution time | test_suite |
sdlc.testing.tests_executed | Counter | count | Total tests run | type, selector |
sdlc.testing.tests_selected | Gauge | ratio | Percentage of test suite run | selection_strategy |
sdlc.testing.pass_rate | Gauge | ratio | Test pass percentage | suite |
sdlc.testing.coverage.line | Gauge | percent | Line coverage | module |
sdlc.testing.coverage.branch | Gauge | percent | Branch coverage | module |
sdlc.testing.coverage.function | Gauge | percent | Function coverage | module |
sdlc.testing.flakiness_rate | Gauge | ratio | Flaky test percentage | test_name |
agent.tester.generation_time | Histogram | seconds | Time to generate tests | target_type |
agent.tester.tests_generated | Counter | count | Tests auto-generated | generation_type |
test.execution.duration | Histogram | seconds | Individual test duration | test_name |
test.failure.analysis_time | Histogram | seconds | RCA analysis duration | failure_type |
Phase 5: CI/CD & Deployment
| Metric Name | Type | Unit | Description | Labels |
|---|---|---|---|---|
sdlc.cicd.lead_time | Histogram | seconds | Commit to production | project |
sdlc.cicd.cycle_time | Histogram | seconds | Pipeline execution time | pipeline_id |
sdlc.cicd.queue_time | Histogram | seconds | Time waiting for resources | runner_type |
sdlc.cicd.success_rate | Gauge | ratio | Pipeline success rate | pipeline_id |
sdlc.cicd.rollback_rate | Gauge | ratio | Percentage of rollbacks | project |
sdlc.cicd.mean_time_to_recovery | Histogram | seconds | Recovery from failure | failure_type |
sdlc.deploy.canary_duration | Histogram | seconds | Canary observation window | deployment_id |
sdlc.deploy.traffic_shift_duration | Histogram | seconds | Time to shift traffic | strategy |
pipeline.cache.hit_rate | Gauge | ratio | Build cache effectiveness | cache_type |
pipeline.parallelization.efficiency | Gauge | ratio | Worker utilization | pipeline_id |
deployment.validation.duration | Histogram | seconds | Post-deploy validation | check_type |
deployment.error_rate.canary | Gauge | ratio | Error rate during canary | deployment_id |
Phase 6: Monitoring & Feedback
| Metric Name | Type | Unit | Description | Labels |
|---|---|---|---|---|
sdlc.monitoring.alert_count | Counter | count | Alerts fired | severity, type |
sdlc.monitoring.mean_time_to_detect | Histogram | seconds | Time to detect issues | detection_method |
agent.monitor.anomalies_detected | Counter | count | Anomalies found | severity |
agent.monitor.synthetic_pass_rate | Gauge | ratio | Synthetic test success | endpoint |
sdlc.feedback.defect_escape_rate | Gauge | ratio | Defects found post-deploy | severity |
sdlc.feedback.user_satisfaction | Gauge | score | User feedback scores | feature |
Cross-Cutting: Agent Behavior
| Metric Name | Type | Unit | Description | Labels |
|---|---|---|---|---|
agent.decision.count | Counter | count | Decisions made | agent, decision_type |
agent.decision.confidence | Gauge | score | Confidence in decisions | agent |
agent.decision.human_override | Counter | count | Human overrides | agent, reason |
agent.learning.patterns_learned | Counter | count | New patterns stored | pattern_type |
agent.learning.reflections | Counter | count | Reflection cycles | trigger_type |
agent.memory.operations | Counter | count | Memory read/write | operation |
agent.orchestrator.handoffs | Counter | count | Agent handoffs | from_agent, to_agent |
agent.cost.total | Counter | USD | Total LLM cost | agent, model |
agent.cost.per_request | Histogram | USD | Cost per request | agent |
1.3 Metric Collection Methods
yamlcollection_methods: # Push-based: Agents send metrics directly push: - agent_internal_metrics # Built-in agent telemetry - custom_business_metrics # Application-specific # Pull-based: Scraped by collector pull: - prometheus_exporters # Standard exporters - application_endpoints # /metrics endpoints # Derived: Computed from other metrics derived: - rate_calculations # rates_over_time() - aggregations # sum by (label) - ratios # error_rate / total
2. Logging and Tracing Strategy
2.1 Structured Logging
Log Levels
| Level | Usage | Retention |
|---|---|---|
DEBUG | Detailed agent reasoning, tool inputs/outputs | 7 days |
INFO | Normal operations, phase transitions | 30 days |
WARN | Degraded performance, retry attempts | 90 days |
ERROR | Failures, exceptions, circuit breaker triggers | 1 year |
CRITICAL | Safety stops, human escalation | Permanent |
Log Schema
typescriptinterface AgentLogEntry { // Identity timestamp: string; // ISO 8601 with nanoseconds trace_id: string; // W3C trace context span_id: string; parent_span_id?: string; // Source agent_id: string; agent_type: 'planner' | 'implementer' | 'reviewer' | 'tester' | 'deployer' | 'monitor' | 'orchestrator'; phase: 'planning' | 'implementation' | 'review' | 'testing' | 'deployment' | 'monitoring'; version: string; // Content level: 'DEBUG' | 'INFO' | 'WARN' | 'ERROR' | 'CRITICAL'; message: string; event_type: string; // Context context: { project_id: string; task_id: string; iteration?: number; session_id: string; }; // Payload payload?: { input?: unknown; output?: unknown; duration_ms?: number; token_usage?: { prompt: number; completion: number; total: number; }; cost_usd?: number; }; // Metadata labels: Record<string, string>; }
2.2 Event Schemas
Event Types by Phase
typescript// Planning Phase Events interface PlanningStarted { event_type: 'planning.started'; payload: { requirements_summary: string; estimated_complexity: 'low' | 'medium' | 'high'; }; } interface PlanningCompleted { event_type: 'planning.completed'; payload: { stories_count: number; architecture_selected: string; duration_ms: number; }; } // Implementation Phase Events interface ImplementationStarted { event_type: 'implementation.started'; payload: { module_count: number; parallel_workers: number; }; } interface ToolExecution { event_type: 'tool.executed'; payload: { tool_name: string; tool_version: string; input_hash: string; output_hash: string; duration_ms: number; success: boolean; retry_count: number; }; } interface AgentLoopIteration { event_type: 'agent.loop_iteration'; payload: { iteration_number: number; perception_summary: string; reasoning_summary: string; action_taken: string; outcome: 'success' | 'failure' | 'retry'; }; } // Review Phase Events interface ReviewStarted { event_type: 'review.started'; payload: { files_changed: number; lines_changed: number; risk_score: number; }; } interface FindingDetected { event_type: 'review.finding_detected'; payload: { severity: 'low' | 'medium' | 'high' | 'critical'; category: string; file: string; line: number; analyzer: string; confidence: number; message: string; }; } interface ReviewCompleted { event_type: 'review.completed'; payload: { findings_count: number; by_severity: Record<string, number>; approved: boolean; requires_human: boolean; }; } // Testing Phase Events interface TestExecutionStarted { event_type: 'test.execution_started'; payload: { test_count: number; selection_strategy: string; estimated_duration_ms: number; }; } interface TestCompleted { event_type: 'test.completed'; payload: { test_id: string; test_name: string; suite: string; result: 'passed' | 'failed' | 'skipped' | 'flaky'; duration_ms: number; assertions: number; error?: string; }; } interface CoverageReported { event_type: 'test.coverage_reported'; payload: { line_coverage: number; branch_coverage: number; function_coverage: number; uncovered_lines: number; }; } // Deployment Phase Events interface DeploymentStarted { event_type: 'deployment.started'; payload: { deployment_id: string; strategy: 'canary' | 'blue_green' | 'rolling' | 'immediate'; target_environment: string; artifact_version: string; }; } interface TrafficShifted { event_type: 'deployment.traffic_shifted'; payload: { deployment_id: string; previous_percent: number; new_percent: number; duration_ms: number; }; } interface DeploymentValidated { event_type: 'deployment.validated'; payload: { deployment_id: string; checks_passed: number; checks_failed: number; error_rate: number; latency_p95: number; }; } interface RollbackInitiated { event_type: 'deployment.rollback_initiated'; payload: { deployment_id: string; reason: string; trigger: 'automatic' | 'manual'; metrics_at_trigger: Record<string, number>; }; } // Monitoring Phase Events interface AnomalyDetected { event_type: 'monitoring.anomaly_detected'; payload: { metric: string; expected_value: number; actual_value: number; deviation_percent: number; severity: string; }; } interface AlertFired { event_type: 'monitoring.alert_fired'; payload: { alert_id: string; alert_name: string; severity: 'warning' | 'critical' | 'emergency'; condition: string; value: number; threshold: number; }; } // Orchestration Events interface PhaseTransition { event_type: 'orchestration.phase_transition'; payload: { from_phase: string; to_phase: string; checkpoint_id: string; duration_in_previous_ms: number; }; } interface HumanInterventionRequested { event_type: 'orchestration.human_intervention_requested'; payload: { reason: string; urgency: 'low' | 'medium' | 'high'; estimated_response_time: number; context_summary: string; }; } interface CheckpointCreated { event_type: 'orchestration.checkpoint_created'; payload: { checkpoint_id: string; phase: string; state_size_bytes: number; validation_passed: boolean; }; }
2.3 Distributed Tracing
Trace Structure
Trace: sdlc_execution (root)
├── Span: planning_phase
│ ├── Span: requirements_analysis
│ ├── Span: architecture_design
│ └── Span: story_generation
├── Span: implementation_phase
│ ├── Span: module_implementation (parallel)
│ │ ├── Span: code_generation
│ │ ├── Span: self_validation
│ │ └── Span: iteration_loop (repeated)
│ └── Span: integration
├── Span: review_phase
│ ├── Span: static_analysis
│ ├── Span: security_scan
│ └── Span: ai_review
├── Span: testing_phase
│ ├── Span: test_selection
│ ├── Span: test_execution (parallel per worker)
│ └── Span: failure_analysis
├── Span: deployment_phase
│ ├── Span: build
│ ├── Span: canary_deploy
│ │ ├── Span: traffic_shift (repeated)
│ │ └── Span: health_check (repeated)
│ └── Span: full_rollout
└── Span: monitoring_phase
├── Span: synthetic_test
└── Span: metric_collection
Span Attributes
typescriptinterface SDLCSpanAttributes { // Standard OpenTelemetry attributes 'service.name': string; 'service.version': string; 'deployment.environment': string; // SDLC-specific attributes 'sdlc.project_id': string; 'sdlc.phase': string; 'sdlc.agent_id': string; 'sdlc.agent_type': string; // Cost attributes 'cost.tokens_prompt': number; 'cost.tokens_completion': number; 'cost.usd': number; // Performance attributes 'performance.iteration_count': number; 'performance.tool_calls': number; 'performance.cache_hits': number; }
2.4 Context Propagation
typescript// W3C Trace Context propagation interface TraceContext { traceparent: string; // 00-{trace_id}-{span_id}-{flags} tracestate: string; // Vendor-specific context } // SDLC-specific baggage interface SDLCBaggage { 'sdlc.project_id': string; 'sdlc.session_id': string; 'sdlc.human_owner': string; 'sdlc.criticality': 'low' | 'medium' | 'high'; }
3. Storage Recommendations
3.1 Storage Architecture
┌─────────────────────────────────────────────────────────────────┐
│ Storage Layer │
├─────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Hot Storage │ │ Warm Storage│ │ Cold Storage│ │
│ │ (Real-time) │ │ (Analytics) │ │ (Archive) │ │
│ ├──────────────┤ ├──────────────┤ ├──────────────┤ │
│ │ Prometheus │ │ ClickHouse │ │ S3/GCS │ │
│ │ Redis │ │ BigQuery │ │ Glacier │ │
│ │ InfluxDB │ │ Snowflake │ │ │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
│ │
│ ┌──────────────────────────────────────────────────┐ │
│ │ Event Store │ │
│ │ (Kafka / Pulsar / EventStoreDB) │ │
│ └──────────────────────────────────────────────────┘ │
│ │
│ ┌──────────────────────────────────────────────────┐ │
│ │ Trace Store │ │
│ │ (Jaeger / Tempo / Honeycomb) │ │
│ └──────────────────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────┘
3.2 Storage by Data Type
| Data Type | Primary Store | Retention | Query Pattern |
|---|---|---|---|
| Metrics (real-time) | Prometheus | 15 days | Time-series aggregation |
| Metrics (long-term) | Thanos/Cortex | 2 years | Historical trends |
| Metrics (analytics) | ClickHouse | 5 years | OLAP queries |
| Logs (hot) | Loki/Elasticsearch | 7 days | Full-text search |
| Logs (warm) | S3 + Athena | 90 days | Infrequent queries |
| Logs (cold) | Glacier | 7 years | Compliance only |
| Events | Kafka + ClickHouse | 2 years | Event sourcing |
| Traces | Jaeger/Tempo | 7 days | Distributed tracing |
| Traces (sampled) | Long-term store | 30 days | Error analysis |
| Checkpoints | S3 + EFS | 30 days | Recovery |
| Learnings/Memory | Vector DB (Pinecone) | Permanent | Semantic search |
3.3 Schema Design
Time-Series Metrics Schema (ClickHouse)
sqlCREATE TABLE sdlc_metrics ( timestamp DateTime64(9), metric_name LowCardinality(String), metric_value Float64, -- Labels project_id LowCardinality(String), phase LowCardinality(String), agent_id LowCardinality(String), agent_type LowCardinality(String), environment LowCardinality(String), -- Dynamic labels as Map labels Map(LowCardinality(String), String), -- Aggregation INDEX idx_project project_id TYPE bloom_filter GRANULARITY 4, INDEX idx_phase phase TYPE bloom_filter GRANULARITY 4 ) ENGINE = MergeTree() PARTITION BY toYYYYMM(timestamp) ORDER BY (metric_name, project_id, timestamp);
Events Schema (ClickHouse)
sqlCREATE TABLE sdlc_events ( timestamp DateTime64(9), trace_id String, span_id String, parent_span_id String, event_type LowCardinality(String), level LowCardinality(String), agent_id LowCardinality(String), agent_type LowCardinality(String), phase LowCardinality(String), project_id LowCardinality(String), message String, payload JSON, -- Cost tracking cost_usd Float64, tokens_prompt UInt32, tokens_completion UInt32, -- Performance duration_ms UInt32, INDEX idx_trace trace_id TYPE bloom_filter GRANULARITY 4, INDEX idx_event_type event_type TYPE bloom_filter GRANULARITY 4 ) ENGINE = MergeTree() PARTITION BY toYYYYMMDD(timestamp) ORDER BY (event_type, project_id, timestamp);
Trace Schema (Jaeger/Tempo compatible)
yamltrace: trace_id: string span_id: string parent_span_id: string service_name: string operation_name: string start_time: timestamp duration_ms: int tags: - key: string value: any type: string logs: - timestamp: timestamp fields: map<string, any> references: - ref_type: child_of | follows_from trace_id: string span_id: string
3.4 Sampling Strategies
yamlsampling: # Head-based sampling for normal operations head_sampling: rate: 0.1 # 10% of traces # Tail-based sampling for interesting traces tail_sampling: policies: # Always sample errors - name: errors type: status_code status_codes: [ERROR] # Sample slow operations - name: slow_requests type: latency threshold_ms: 5000 # Sample high-cost operations - name: expensive type: attribute key: cost.usd threshold: 0.10 # Sample specific phases - name: critical_phases type: attribute key: sdlc.phase values: [deployment, review]
4. Query Patterns
4.1 Operational Queries
Real-Time Monitoring
promql# Error rate by phase sum(rate(sdlc_events_total{level="ERROR"}[5m])) by (phase) / sum(rate(sdlc_events_total[5m])) by (phase) # Current active agents sum(sdlc_active_agents) by (agent_type) # Deployment success rate (last hour) sum(rate(sdlc_deployment_completed_total{status="success"}[1h])) / sum(rate(sdlc_deployment_completed_total[1h])) # Cost per project (current day) sum(increase(agent_cost_total_usd[1d])) by (project_id)
Health Checks
sql-- Stuck agents (no activity for >5 minutes) SELECT agent_id, agent_type, max(timestamp) as last_seen, now() - max(timestamp) as idle_duration FROM sdlc_events WHERE timestamp > now() - INTERVAL 1 HOUR GROUP BY agent_id, agent_type HAVING idle_duration > 300; -- Failed deployments requiring attention SELECT deployment_id, project_id, timestamp, payload.reason FROM sdlc_events WHERE event_type = 'deployment.rollback_initiated' AND timestamp > now() - INTERVAL 24 HOURS ORDER BY timestamp DESC;
4.2 Debugging Queries
Trace Analysis
sql-- Find slow traces SELECT trace_id, duration_ms, phase, agent_id FROM sdlc_spans WHERE duration_ms > 60000 AND timestamp > now() - INTERVAL 1 HOUR ORDER BY duration_ms DESC LIMIT 100; -- Error trace details SELECT trace_id, span_id, event_type, message, payload.error FROM sdlc_events WHERE level = 'ERROR' AND trace_id IN ( SELECT trace_id FROM sdlc_events WHERE event_type = 'orchestration.phase_transition' AND timestamp > now() - INTERVAL 1 HOUR ) ORDER BY timestamp;
Agent Behavior Analysis
sql-- Agent loop efficiency SELECT agent_id, avg(iteration_count) as avg_iterations, avg(duration_ms) as avg_duration, countIf(outcome = 'success') / count() as success_rate FROM sdlc_events WHERE event_type = 'agent.loop_iteration' AND timestamp > now() - INTERVAL 24 HOURS GROUP BY agent_id; -- Tool usage patterns SELECT payload.tool_name, count() as call_count, avg(payload.duration_ms) as avg_latency, countIf(payload.success = false) / count() as error_rate FROM sdlc_events WHERE event_type = 'tool.executed' AND timestamp > now() - INTERVAL 7 DAYS GROUP BY payload.tool_name ORDER BY call_count DESC;
4.3 Analytics Queries
Performance Trends
sql-- Phase duration trends SELECT toStartOfDay(timestamp) as day, phase, avg(duration_ms) / 1000 as avg_duration_seconds, quantile(0.95)(duration_ms) / 1000 as p95_duration_seconds FROM sdlc_events WHERE event_type LIKE '%.completed' AND timestamp > now() - INTERVAL 30 DAYS GROUP BY day, phase ORDER BY day, phase; -- Cost trends by agent type SELECT toStartOfWeek(timestamp) as week, agent_type, sum(cost_usd) as total_cost, avg(cost_usd) as avg_per_operation FROM sdlc_events WHERE cost_usd > 0 AND timestamp > now() - INTERVAL 90 DAYS GROUP BY week, agent_type ORDER BY week, total_cost DESC;
Quality Metrics
sql-- Defect escape analysis SELECT review_phase.findings_count, post_deploy.defects_found, review_phase.findings_count > 0 as review_caught FROM ( SELECT project_id, sum(payload.findings_count) as findings_count FROM sdlc_events WHERE event_type = 'review.completed' GROUP BY project_id ) review_phase JOIN ( SELECT project_id, count() as defects_found FROM sdlc_events WHERE event_type = 'monitoring.defect_detected' GROUP BY project_id ) post_deploy ON review_phase.project_id = post_deploy.project_id; -- Test flakiness trends SELECT test_name, count() as total_runs, countIf(result = 'flaky') as flaky_runs, flaky_runs / total_runs as flakiness_rate FROM sdlc_events WHERE event_type = 'test.completed' AND timestamp > now() - INTERVAL 30 DAYS GROUP BY test_name HAVING flakiness_rate > 0.05 ORDER BY flakiness_rate DESC;
4.4 Cost Optimization Queries
sql-- High-cost operations SELECT event_type, agent_type, count() as operation_count, sum(cost_usd) as total_cost, avg(cost_usd) as avg_cost, max(cost_usd) as max_cost FROM sdlc_events WHERE cost_usd > 0.01 AND timestamp > now() - INTERVAL 7 DAYS GROUP BY event_type, agent_type ORDER BY total_cost DESC LIMIT 50; -- Cache effectiveness SELECT agent_type, sum(payload.cache_hits) as hits, sum(payload.cache_misses) as misses, hits / (hits + misses) as hit_ratio FROM sdlc_events WHERE event_type = 'agent.loop_iteration' AND timestamp > now() - INTERVAL 7 DAYS GROUP BY agent_type;
5. Dashboard Requirements
5.1 Dashboard Hierarchy
Observability Dashboards
│
├── Executive Overview
│ ├── SDLC Velocity
│ ├── Cost Summary
│ └── Quality Scorecard
│
├── Operational
│ ├── Real-Time Pipeline Status
│ ├── Agent Health
│ └── System Performance
│
├── Phase-Specific
│ ├── Planning Dashboard
│ ├── Implementation Dashboard
│ ├── Review Dashboard
│ ├── Testing Dashboard
│ ├── Deployment Dashboard
│ └── Monitoring Dashboard
│
├── Debugging
│ ├── Trace Explorer
│ ├── Error Analysis
│ └── Cost Investigation
│
└── Analytics
├── Trends & Forecasting
├── Comparative Analysis
└── Capacity Planning
5.2 Executive Overview Dashboard
| Panel | Visualization | Data Source | Refresh |
|---|---|---|---|
| Lead Time Trend | Line chart | sdlc.cicd.lead_time | 1h |
| Deployment Frequency | Bar chart | sdlc.cicd.deployment.count | 1h |
| Change Failure Rate | Gauge | sdlc.cicd.rollback_rate | 5m |
| MTTR | Stat panel | sdlc.cicd.mean_time_to_recovery | 5m |
| Cost Per Project | Pie chart | agent.cost.total | 1h |
| Quality Score | Scorecard | Composite metric | 1h |
| Active Projects | Table | sdlc.active_projects | 5m |
5.3 Real-Time Pipeline Status
yamldashboard: title: "SDLC Pipeline Status" refresh: 5s panels: # Global health - title: "Active Executions" type: stat query: count(sdlc_active_executions) - title: "Queue Depth" type: gauge query: avg(sdlc_queue_depth) thresholds: [10, 50, 100] # Phase status - title: "Phase Distribution" type: pie query: | SELECT phase, count() FROM sdlc_events WHERE event_type = 'orchestration.phase_transition' AND timestamp > now() - INTERVAL 1 HOUR GROUP BY phase # Error heatmap - title: "Error Rate Heatmap" type: heatmap query: | SELECT toStartOfFiveMinute(timestamp) as time, phase, count() as errors FROM sdlc_events WHERE level = 'ERROR' GROUP BY time, phase # Cost rate - title: "Real-Time Cost" type: graph query: | rate(agent_cost_total_usd[5m])
5.4 Agent Health Dashboard
| Panel | Metric | Alert Threshold |
|---|---|---|
| Active Agents by Type | sdlc_active_agents | - |
| Agent Loop Duration | agent.loop_iteration.duration | p99 > 30s |
| Tool Error Rate | agent.tool_calls (error/total) | > 5% |
| Token Usage Rate | agent.token_usage | - |
| Stuck Agents | Custom query | > 0 |
| Agent Decisions/Min | agent.decision.count | - |
| Learning Rate | agent.learning.patterns_learned | - |
5.5 Phase-Specific Dashboards
Implementation Dashboard
yamlpanels: - title: "Code Generation Rate" query: rate(sdlc.implementation.lines_written[5m]) - title: "Validation Success Rate" query: | 1 - ( rate(agent.implementer.validation_failures[5m]) / rate(sdlc.implementation.modules_completed[5m]) ) - title: "Tool Usage Distribution" type: pie query: | SELECT tool_name, count() FROM sdlc_events WHERE event_type = 'tool.executed' GROUP BY tool_name - title: "Iteration Count Distribution" type: histogram query: | SELECT iteration_count, count() FROM sdlc_events WHERE event_type = 'agent.loop_iteration' GROUP BY iteration_count
Deployment Dashboard
yamlpanels: - title: "Deployment Success Rate" query: sdlc.cicd.success_rate - title: "Canary Health" query: | SELECT deployment_id, error_rate, latency_p95 FROM sdlc_events WHERE event_type = 'deployment.validated' ORDER BY timestamp DESC LIMIT 10 - title: "Rollback Timeline" type: timeline query: | SELECT timestamp, deployment_id, reason FROM sdlc_events WHERE event_type = 'deployment.rollback_initiated' - title: "Traffic Distribution" type: stacked_area query: | SELECT timestamp, deployment_id, payload.new_percent as traffic_percent FROM sdlc_events WHERE event_type = 'deployment.traffic_shifted'
6. Alerting Thresholds
6.1 Severity Levels
| Level | Response Time | Notification | Examples |
|---|---|---|---|
| P1 - Critical | Immediate | Page/SMS/Voice | System down, security breach, data loss |
| P2 - High | 15 minutes | Slack/Email | High error rate, deployment failure |
| P3 - Medium | 1 hour | Slack | Elevated latency, cost spike |
| P4 - Low | 4 hours | Minor degradation, warning threshold | |
| P5 - Info | Next business day | Dashboard | Trends, recommendations |
6.2 Alert Rules by Category
System Health Alerts
yamlalerts: - name: AgentStuck severity: P2 condition: | max_over_time( (time() - sdlc_agent_last_activity_timestamp)[5m:] ) > 300 for: 2m annotations: summary: "Agent {{ $labels.agent_id }} has been stuck for 5+ minutes" - name: HighErrorRate severity: P1 condition: | ( sum(rate(sdlc_events_total{level="ERROR"}[5m])) / sum(rate(sdlc_events_total[5m])) ) > 0.1 for: 2m annotations: summary: "Error rate above 10%" - name: QueueBackup severity: P2 condition: sdlc_queue_depth > 50 for: 5m annotations: summary: "Pipeline queue backing up ({{ $value }} items)"
Performance Alerts
yamlalerts: - name: SlowAgentLoop severity: P3 condition: | histogram_quantile(0.99, sum(rate(agent_loop_duration_bucket[5m])) by (le, agent_type) ) > 30 for: 5m annotations: summary: "P99 agent loop duration > 30s for {{ $labels.agent_type }}" - name: HighLatency severity: P3 condition: | histogram_quantile(0.95, sum(rate(sdlc_phase_duration_bucket[5m])) by (le, phase) ) > 300 for: 10m annotations: summary: "P95 phase duration > 5 minutes for {{ $labels.phase }}" - name: CacheHitRateLow severity: P4 condition: | ( sum(rate(agent_cache_hits[5m])) / sum(rate(agent_cache_operations[5m])) ) < 0.5 for: 15m annotations: summary: "Cache hit rate below 50%"
Cost Alerts
yamlalerts: - name: CostSpike severity: P3 condition: | ( sum(increase(agent_cost_total_usd[1h])) > 2 * sum(increase(agent_cost_total_usd[1h] offset 24h)) ) for: 15m annotations: summary: "Cost spike detected: 2x normal hourly rate" - name: HighCostProject severity: P4 condition: | sum(increase(agent_cost_total_usd[24h])) by (project_id) > 100 for: 1h annotations: summary: "Project {{ $labels.project_id }} exceeded $100/day" - name: ExpensiveOperation severity: P4 condition: agent_cost_per_operation > 0.5 for: 0m annotations: summary: "Single operation cost > $0.50"
Quality Alerts
yamlalerts: - name: DeploymentFailure severity: P1 condition: | increase(sdlc_deployment_completed_total{status="failed"}[5m]) > 0 for: 0m annotations: summary: "Deployment failure detected" - name: HighRollbackRate severity: P2 condition: | ( sum(rate(sdlc_cicd_rollback_total[1h])) / sum(rate(sdlc_cicd_deployment_total[1h])) ) > 0.05 for: 10m annotations: summary: "Rollback rate above 5%" - name: TestPassRateLow severity: P2 condition: sdlc_testing_pass_rate < 0.9 for: 5m annotations: summary: "Test pass rate below 90%" - name: FlakyTestsDetected severity: P4 condition: sdlc_testing_flakiness_rate > 0.1 for: 1h annotations: summary: "Flaky test rate above 10%"
Security Alerts
yamlalerts: - name: SecurityFindingCritical severity: P1 condition: | increase(sdlc_review_findings_total{severity="critical"}[5m]) > 0 for: 0m annotations: summary: "Critical security finding detected" - name: SecretsExposed severity: P1 condition: | increase(sdlc_cicd_security_scan_secrets_found[5m]) > 0 for: 0m annotations: summary: "Potential secrets exposed in code"
6.3 Alert Routing
yamlrouting: default: team-sdlc-oncall routes: - match: severity: P1 receiver: pagerduty-critical continue: true - match: severity: P2 receiver: slack-alerts-high - match: severity: P3 receiver: slack-alerts-medium - match: alertname: CostSpike receiver: finance-team - match: alertname: SecretsExposed receiver: security-team - match: agent_type: deployer receiver: platform-team receivers: pagerduty-critical: pagerduty_configs: - service_key: "${PAGERDUTY_KEY}" severity: critical slack-alerts-high: slack_configs: - channel: "#sdlc-alerts-high" send_resolved: true slack-alerts-medium: slack_configs: - channel: "#sdlc-alerts-medium" send_resolved: true finance-team: email_configs: - to: "finance@company.com" security-team: slack_configs: - channel: "#security-incidents" send_resolved: true
6.4 Alert Suppression
yamlinhibition_rules: # Suppress lower-severity alerts when critical is firing - source_match: severity: P1 target_match: severity: P2 equal: ['project_id', 'phase'] # Suppress agent-specific alerts when orchestrator is down - source_match: alertname: OrchestratorDown target_match_re: alertname: Agent.* equal: ['environment'] silences: # Maintenance windows - matchers: - name: environment value: staging startsAt: "2026-02-07T02:00:00Z" endsAt: "2026-02-07T04:00:00Z" comment: "Scheduled maintenance"
7. Implementation Checklist
Phase 1: Foundation
- Deploy Prometheus for metrics collection
- Deploy Loki for log aggregation
- Deploy Jaeger/Tempo for distributed tracing
- Configure OpenTelemetry SDK in agents
- Set up Kafka for event streaming
Phase 2: Storage
- Deploy ClickHouse for analytics
- Configure S3 lifecycle policies
- Set up Thanos for long-term metric storage
- Deploy vector database for agent memory
Phase 3: Visualization
- Deploy Grafana
- Create executive dashboard
- Create operational dashboards
- Create phase-specific dashboards
Phase 4: Alerting
- Deploy Alertmanager
- Configure PagerDuty integration
- Set up Slack notifications
- Define alert routing rules
- Create runbooks for each alert
Phase 5: Optimization
- Implement sampling strategies
- Tune retention policies
- Optimize query performance
- Set up cost monitoring
- Create anomaly detection
8. References
Related Research
- 01 - Agentic Loops and Orchestration Patterns
- 02 - Feedback Loops and Reflection Mechanisms
- 03 - Automated Code Review Systems
- 04 - Automated Testing and Quality Assurance
- 05 - CI/CD Pipeline Automation and Deployment
- 06 - End-to-End SDLC Orchestration
External Standards
- OpenTelemetry Specification
- Prometheus Best Practices
- W3C Distributed Tracing
- CloudEvents Specification
Generated: 2026-02-06
Version: 1.0