Implementation Roadmap: Agentic SDLC Orchestration
Implementation Roadmap: Agentic SDLC Orchestration
Generated: 2026-02-06
Source: Research corpus analysis of 6 topic areas
Status: Draft for review
1. Executive Summary
Based on analysis of the research corpus covering Agentic Loops, Feedback Mechanisms, Code Review, Testing/QA, CI/CD, and SDLC Orchestration, this roadmap proposes a phased implementation approach for building an AI-driven SDLC orchestration system.
Key Finding: Start with Feedback Loops as the foundational layer, then build Code Review as the first vertical slice, followed by Testing and CI/CD integration. The full SDLC orchestrator comes last once primitives are proven.
2. Priority Matrix
| Component | Business Value | Technical Risk | Implementation Effort | Priority |
|---|---|---|---|---|
| Feedback Loops & Memory | Critical | Medium | 2 weeks | P0 - MVP |
| Code Review Agent | High | Low | 2 weeks | P1 |
| Test Generation/Selection | High | Medium | 2 weeks | P1 |
| CI/CD Integration | Medium | Medium | 1 week | P2 |
| SDLC Orchestrator | High | High | 1 week (MVP) | P3 |
| Multi-Agent Coordination | Medium | High | Ongoing | P4 |
Quick Wins (Week 1-2)
- Structured feedback capture - Store errors, patterns, resolutions
- Basic code review bot - PR comments, linting integration
- Test failure analyzer - Parse Jest/Vitest output, suggest fixes
Long-Term Investments (Week 6-8+)
- Multi-agent orchestration - Parallel implementation agents
- Self-improving memory - GEP protocol implementation
- Autonomous deployment - Canary with AI health analysis
3. Critical Path Dependencies
┌─────────────────────────────────────────────────────────────────────────────┐
│ DEPENDENCY GRAPH │
└─────────────────────────────────────────────────────────────────────────────┘
Phase 1: Foundation (Weeks 1-2)
─────────────────────────────────
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ Memory │────▶│ Feedback │────▶│ Reflection │
│ Store │ │ Capture │ │ Engine │
└──────────────┘ └──────────────┘ └──────┬───────┘
│
▼
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ Error │────▶│ Pattern │────▶│ Gene/ │
│ Taxonomy │ │ Matching │ │ Capsule DB │
└──────────────┘ └──────────────┘ └──────────────┘
Phase 2: Vertical Slices (Weeks 3-5)
─────────────────────────────────────
┌──────────────┐
┌──────────────┐ ┌──────────────┐ ┌─────▶│ Code Review │
│ Feedback │────▶│ Tool Use │─────┘ │ Agent │
│ System │ │ Framework │ └──────────────┘
└──────────────┘ └──────────────┘
│ ┌──────────────┐
│ ┌─────▶│ Test Runner │
│ │ │ Integration │
▼ │ └──────────────┘
┌──────────────┐ ┌──────────────┐ ┌┴─────────────┐
│ GitHub │────▶│ Git │────▶│ CI/CD Hook │
│ API │ │ Parser │ │ Handler │
└──────────────┘ └──────────────┘ └──────────────┘
Phase 3: Orchestration (Weeks 6-8)
───────────────────────────────────
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ Code Review │────▶│ SDLC │◀────│ Test │
│ Agent │ │ Orchestrator │ │ Agent │
└──────────────┘ └──────┬───────┘ └──────────────┘
│
┌─────────────┼─────────────┐
▼ ▼ ▼
┌──────────┐ ┌──────────┐ ┌──────────┐
│ Planner │ │Deployer │ │ Monitor │
│ Agent │ │ Agent │ │ Agent │
└──────────┘ └──────────┘ └──────────┘
Hard Dependencies (Must be built first)
| Dependency | Required By | Why Critical |
|---|---|---|
| Memory Store | All agents | Agents need persistence to learn |
| Error Taxonomy | Reflection, Review | Classifying issues enables pattern matching |
| Tool Framework | All agents | Unified interface for LLM tool use |
| Git Parser | Review, CI/CD | Understanding code changes |
Soft Dependencies (Can be stubbed initially)
| Dependency | Can Be Stubbed With |
|---|---|
| LLM-as-judge | Simple rule-based scoring |
| Advanced caching | In-memory cache |
| Production metrics | Synthetic test results |
| Multi-agent coordination | Sequential execution |
4. Phase Breakdown (8 Weeks)
Phase 1: Foundation Layer (Weeks 1-2)
Goal: Build the primitives that everything else depends on
Week 1: Memory & Feedback Infrastructure
typescript// Core interfaces to implement interface MemoryStore { store(event: LearningEvent): Promise<void>; query(context: Context): Promise<Pattern[]>; consolidate(): Promise<void>; } interface FeedbackCapture { captureError(error: Error, context: Context): Promise<void>; captureSuccess(execution: Execution): Promise<void>; captureReview(feedback: ReviewComment): Promise<void>; }
Deliverables:
- SQLite-based memory store schema
- Error taxonomy with 5 categories: syntax, runtime, logic, api, system
- Event capture pipeline (structured logging)
- Basic pattern matching (string similarity)
Week 2: Reflection Engine
typescriptinterface ReflectionEngine { reflect(execution: Execution): Promise<Insights>; suggestImprovements(pattern: Pattern): Promise<Suggestion[]>; validateLearning(suggestion: Suggestion): Promise<boolean>; }
Deliverables:
- Post-execution reflection logic
- Confidence scoring for suggestions
- Gene/Capsule data model (GEP protocol subset)
- Human approval gate for high-impact learnings
Risk Mitigation:
- Start with JSON file storage, migrate to SQLite later
- Hard confidence thresholds (0.8+) before auto-applying
- All learnings logged for audit
Phase 2: First Vertical Slice - Code Review (Weeks 3-4)
Goal: Prove value with a complete, usable agent
Week 3: Core Review Agent
typescriptinterface CodeReviewAgent { parsePR(pr: PR): Promise<CodebaseDiff>; runStaticAnalysis(diff: Diff): Promise<Issue[]>; aiReview(diff: Diff, context: Context): Promise<Comment[]>; generateReport(results: Results): Promise<ReviewReport>; }
Deliverables:
- GitHub PR webhook handler
- Diff parser (TypeScript/JavaScript focus)
- Integration with eslint/prettier
- LLM review prompts with examples
- Risk-based review depth (low/medium/high)
Week 4: GitHub Integration & Feedback Loop
typescriptinterface GitHubIntegration { postReview(pr: PR, review: Review): Promise<void>; updateCheckStatus(pr: PR, status: Status): Promise<void>; learnFromDismissals(pr: PR): Promise<void>; }
Deliverables:
- PR comment posting
- Check status integration
- Dismissal tracking (learn what humans disagree with)
- Quality dashboard (metrics display)
Success Criteria:
- Agent reviews PRs within 60 seconds
- False positive rate < 30% (learn from dismissals)
- Captures feedback for continuous improvement
Risk Mitigation:
- Start with low-risk repos only
- Human approval required for "blocking" comments
- Easy disable switch per repo
Phase 3: Testing Integration (Week 5)
Goal: Augment testing with AI capabilities
typescriptinterface TestingAgent { selectTests(changes: Diff, allTests: Test[]): Promise<Test[]>; analyzeFailure(failure: TestFailure): Promise<Diagnosis>; generateTest(code: Function, spec: Spec): Promise<Test>; }
Deliverables:
- Risk-based test selector (change impact analysis)
- Failure analyzer with root cause suggestions
- Test gap identification (untested changes)
- Integration with Jest/Vitest
Quick Win:
typescript// Immediate value: smarter test failure messages const diagnosis = await analyzeFailure(testFailure); // Output: "This test fails because the mock wasn't reset between tests. // Add beforeEach(() => jest.clearAllMocks())"
Phase 4: CI/CD Pipeline (Week 6)
Goal: Connect agents to deployment pipeline
typescriptinterface CICDIntegration { onBuildComplete(build: Build): Promise<void>; onTestComplete(results: TestResults): Promise<void>; onDeployRequest(deploy: DeployConfig): Promise<Decision>; }
Deliverables:
- GitHub Actions integration
- Build failure analysis
- Pre-deploy risk assessment
- Basic deployment check (synthetic health endpoint)
Scope Limitation:
- No auto-rollback in MVP (alert only)
- Manual approval for production deploys
- Focus on analysis/reporting, not automation
Phase 5: SDLC Orchestrator MVP (Weeks 7-8)
Goal: Coordinate multiple agents for end-to-end flow
typescriptinterface SDLCOrchestrator { // MVP: Sequential execution only async execute(requirements: string): Promise<void> { const design = await planner.createDesign(requirements); const code = await implementer.implement(design); const reviewed = await reviewer.review(code); const tested = await tester.test(reviewed); await deployer.deploy(tested); // with human approval } }
Deliverables:
- Shared context bus (in-memory MVP)
- Checkpoint system (save/restore state)
- Sequential orchestration flow
- Human approval gates
- Basic telemetry/metrics
Explicitly NOT Included (Post-MVP):
- Parallel agent execution
- Autonomous deployment
- Self-directed planning
- Multi-repo coordination
5. Risk Assessment by Component
Component: Memory & Feedback
| Risk | Likelihood | Impact | Mitigation |
|---|---|---|---|
| Memory bloat | Medium | Medium | LRU pruning, importance scoring |
| Noise accumulation | High | Medium | Confidence thresholds, human validation |
| Privacy concerns | Low | High | No code stored, only patterns |
Component: Code Review Agent
| Risk | Likelihood | Impact | Mitigation |
|---|---|---|---|
| False positives | High | Medium | Confidence scoring, learn from dismissals |
| LLM cost explosion | Medium | High | Caching, selective review (high-risk only) |
| Security (leaking code) | Low | Critical | Local LLM option, no code to 3rd party |
| Review fatigue | Medium | Medium | Batching, severity filtering |
Component: Testing Agent
| Risk | Likelihood | Impact | Mitigation |
|---|---|---|---|
| Test selection misses bug | Medium | Critical | Baseline smoke tests always run |
| Flaky test misclassification | Medium | Medium | Multiple runs before classification |
| Generated tests are low value | High | Low | Human review before merging |
Component: CI/CD Integration
| Risk | Likelihood | Impact | Mitigation |
|---|---|---|---|
| Auto-deploy breaks prod | Low | Critical | No auto-deploy in MVP, human gates |
| Pipeline latency increase | Medium | Medium | Parallel execution, caching |
| Rollback decision errors | Medium | High | Conservative thresholds, human override |
Component: SDLC Orchestrator
| Risk | Likelihood | Impact | Mitigation |
|---|---|---|---|
| Runaway loops/cost | Medium | High | Max iteration limits, cost budgets |
| Poor quality code | Medium | High | Human review gates, quality gates |
| Loss of context | Medium | Medium | Checkpoint system, state persistence |
| Security vulnerabilities | Medium | Critical | Security scanning, dependency checks |
6. Risk Mitigation Strategies
Strategy 1: Gradual Automation Ladder
Level 0: Human only (current state)
↓
Level 1: AI suggests, human decides (Weeks 3-4)
↓
Level 2: AI acts, human reviews (Weeks 5-6)
↓
Level 3: AI acts, human notified (Weeks 7-8)
↓
Level 4: Full autonomy (Post-MVP)
Never skip levels. Each level requires metrics proving safety.
Strategy 2: Circuit Breakers (Everywhere)
typescriptinterface SafetyControls { maxIterations: 10; maxCostPerTask: 5.00; // USD maxTimePerTask: 300000; // 5 minutes requireHumanApproval: [ 'productionDeploy', 'securityChanges', 'breakingChanges' ]; autoRollbackTriggers: { errorRate: 0.01; latency: 1.5; // 1.5x baseline }; }
Strategy 3: Observable Everything
- Every decision logged with rationale
- Every action attributed to an agent
- Cost tracking per execution
- Quality metrics trended over time
Strategy 4: Human-in-the-Loop Defaults
typescript// Default configuration requires human approval const defaultConfig = { autoFix: false, // Suggest only autoDeploy: false, // Require approval autoMerge: false, // Human decides learningThreshold: 0.9, // High confidence required };
7. Success Metrics
Technical Metrics
| Metric | Baseline | Week 4 Target | Week 8 Target |
|---|---|---|---|
| PR review time | 4 hours | 1 minute | 1 minute |
| Review coverage | 0% | 100% | 100% |
| False positive rate | N/A | <30% | <20% |
| Test failure analysis accuracy | 0% | 60% | 75% |
| System availability | N/A | 99% | 99.5% |
Business Metrics
| Metric | Measurement |
|---|---|
| Developer time saved | Hours of review/test analysis automated |
| Defects caught pre-merge | Issues found by AI review |
| Lead time reduction | Commit to deploy time |
| Cost per change | LLM API costs tracked |
8. Post-MVP Roadmap (Months 3-6)
Q2 Priorities
- Multi-Agent Parallelization - Multiple implementer agents working on different modules
- Advanced Memory - Knowledge graphs, cross-session learning
- Self-Healing - Auto-fix common issues without human intervention
- Cross-Repo Intelligence - Learn patterns across multiple codebases
Q3+ Vision
- Autonomous Planning - Agents break down requirements without human help
- Natural Language Requirements - Stakeholders describe features in plain English
- Continuous Self-Improvement - System improves its own prompts and strategies
- Ecosystem Integration - Jira, Slack, Notion, Figma integration
9. Appendix: Implementation Checklist
Week 1
- SQLite schema for memory store
- Error taxonomy definition
- Event capture pipeline
- Basic pattern matching
Week 2
- Reflection engine
- Gene/Capsule data model
- Confidence scoring
- Human approval workflow
Week 3
- PR webhook handler
- Diff parser
- Static analysis integration
- LLM review prompts
Week 4
- GitHub comment posting
- Check status integration
- Dismissal tracking
- Quality dashboard
Week 5
- Test selector
- Failure analyzer
- Test gap detection
- Jest/Vitest integration
Week 6
- GitHub Actions integration
- Build failure analysis
- Pre-deploy risk assessment
- Synthetic health checks
Week 7
- Shared context bus
- Checkpoint system
- Sequential orchestration
- Approval gates
Week 8
- End-to-end flow testing
- Telemetry/metrics
- Documentation
- Demo preparation
10. Decision Log
| Date | Decision | Rationale |
|---|---|---|
| 2026-02-06 | Start with Feedback Loops | Foundation for all learning; enables continuous improvement |
| 2026-02-06 | Build Code Review first vertical slice | High visibility, clear value, manageable scope |
| 2026-02-06 | Sequential orchestration in MVP | Parallel coordination adds complexity; prove sequential first |
| 2026-02-06 | No auto-deploy in MVP | Safety first; human approval gates required |
| 2026-02-06 | SQLite for memory storage | Simple, portable, no external dependencies |
| 2026-02-06 | TypeScript/JavaScript focus | Primary use case; expand to other languages post-MVP |
End of Roadmap Document