9 min
architecture
February 8, 2026

Implementation Roadmap: Agentic SDLC Orchestration

Implementation Roadmap: Agentic SDLC Orchestration

Generated: 2026-02-06
Source: Research corpus analysis of 6 topic areas
Status: Draft for review


1. Executive Summary

Based on analysis of the research corpus covering Agentic Loops, Feedback Mechanisms, Code Review, Testing/QA, CI/CD, and SDLC Orchestration, this roadmap proposes a phased implementation approach for building an AI-driven SDLC orchestration system.

Key Finding: Start with Feedback Loops as the foundational layer, then build Code Review as the first vertical slice, followed by Testing and CI/CD integration. The full SDLC orchestrator comes last once primitives are proven.


2. Priority Matrix

ComponentBusiness ValueTechnical RiskImplementation EffortPriority
Feedback Loops & MemoryCriticalMedium2 weeksP0 - MVP
Code Review AgentHighLow2 weeksP1
Test Generation/SelectionHighMedium2 weeksP1
CI/CD IntegrationMediumMedium1 weekP2
SDLC OrchestratorHighHigh1 week (MVP)P3
Multi-Agent CoordinationMediumHighOngoingP4

Quick Wins (Week 1-2)

  1. Structured feedback capture - Store errors, patterns, resolutions
  2. Basic code review bot - PR comments, linting integration
  3. Test failure analyzer - Parse Jest/Vitest output, suggest fixes

Long-Term Investments (Week 6-8+)

  1. Multi-agent orchestration - Parallel implementation agents
  2. Self-improving memory - GEP protocol implementation
  3. Autonomous deployment - Canary with AI health analysis

3. Critical Path Dependencies

┌─────────────────────────────────────────────────────────────────────────────┐
│                          DEPENDENCY GRAPH                                    │
└─────────────────────────────────────────────────────────────────────────────┘

Phase 1: Foundation (Weeks 1-2)
─────────────────────────────────
┌──────────────┐     ┌──────────────┐     ┌──────────────┐
│   Memory     │────▶│  Feedback    │────▶│  Reflection  │
│   Store      │     │  Capture     │     │  Engine      │
└──────────────┘     └──────────────┘     └──────┬───────┘
                                                  │
                                                  ▼
┌──────────────┐     ┌──────────────┐     ┌──────────────┐
│   Error      │────▶│   Pattern    │────▶│   Gene/      │
│  Taxonomy    │     │  Matching    │     │  Capsule DB  │
└──────────────┘     └──────────────┘     └──────────────┘

Phase 2: Vertical Slices (Weeks 3-5)
─────────────────────────────────────
                                                  ┌──────────────┐
┌──────────────┐     ┌──────────────┐     ┌─────▶│  Code Review │
│  Feedback    │────▶│  Tool Use    │─────┘      │    Agent     │
│  System      │     │  Framework   │            └──────────────┘
└──────────────┘     └──────────────┘            
       │                                          ┌──────────────┐
       │                                    ┌─────▶│ Test Runner  │
       │                                    │      │  Integration │
       ▼                                    │      └──────────────┘
┌──────────────┐     ┌──────────────┐     ┌┴─────────────┐
│   GitHub     │────▶│    Git       │────▶│  CI/CD Hook  │
│    API       │     │   Parser     │     │   Handler    │
└──────────────┘     └──────────────┘     └──────────────┘

Phase 3: Orchestration (Weeks 6-8)
───────────────────────────────────
┌──────────────┐     ┌──────────────┐     ┌──────────────┐
│ Code Review  │────▶│   SDLC       │◀────│    Test      │
│    Agent     │     │ Orchestrator │     │    Agent     │
└──────────────┘     └──────┬───────┘     └──────────────┘
                            │
              ┌─────────────┼─────────────┐
              ▼             ▼             ▼
        ┌──────────┐  ┌──────────┐  ┌──────────┐
        │ Planner  │  │Deployer  │  │ Monitor  │
        │  Agent   │  │  Agent   │  │  Agent   │
        └──────────┘  └──────────┘  └──────────┘

Hard Dependencies (Must be built first)

DependencyRequired ByWhy Critical
Memory StoreAll agentsAgents need persistence to learn
Error TaxonomyReflection, ReviewClassifying issues enables pattern matching
Tool FrameworkAll agentsUnified interface for LLM tool use
Git ParserReview, CI/CDUnderstanding code changes

Soft Dependencies (Can be stubbed initially)

DependencyCan Be Stubbed With
LLM-as-judgeSimple rule-based scoring
Advanced cachingIn-memory cache
Production metricsSynthetic test results
Multi-agent coordinationSequential execution

4. Phase Breakdown (8 Weeks)

Phase 1: Foundation Layer (Weeks 1-2)

Goal: Build the primitives that everything else depends on

Week 1: Memory & Feedback Infrastructure

typescript
// Core interfaces to implement interface MemoryStore { store(event: LearningEvent): Promise<void>; query(context: Context): Promise<Pattern[]>; consolidate(): Promise<void>; } interface FeedbackCapture { captureError(error: Error, context: Context): Promise<void>; captureSuccess(execution: Execution): Promise<void>; captureReview(feedback: ReviewComment): Promise<void>; }

Deliverables:

  • SQLite-based memory store schema
  • Error taxonomy with 5 categories: syntax, runtime, logic, api, system
  • Event capture pipeline (structured logging)
  • Basic pattern matching (string similarity)

Week 2: Reflection Engine

typescript
interface ReflectionEngine { reflect(execution: Execution): Promise<Insights>; suggestImprovements(pattern: Pattern): Promise<Suggestion[]>; validateLearning(suggestion: Suggestion): Promise<boolean>; }

Deliverables:

  • Post-execution reflection logic
  • Confidence scoring for suggestions
  • Gene/Capsule data model (GEP protocol subset)
  • Human approval gate for high-impact learnings

Risk Mitigation:

  • Start with JSON file storage, migrate to SQLite later
  • Hard confidence thresholds (0.8+) before auto-applying
  • All learnings logged for audit

Phase 2: First Vertical Slice - Code Review (Weeks 3-4)

Goal: Prove value with a complete, usable agent

Week 3: Core Review Agent

typescript
interface CodeReviewAgent { parsePR(pr: PR): Promise<CodebaseDiff>; runStaticAnalysis(diff: Diff): Promise<Issue[]>; aiReview(diff: Diff, context: Context): Promise<Comment[]>; generateReport(results: Results): Promise<ReviewReport>; }

Deliverables:

  • GitHub PR webhook handler
  • Diff parser (TypeScript/JavaScript focus)
  • Integration with eslint/prettier
  • LLM review prompts with examples
  • Risk-based review depth (low/medium/high)

Week 4: GitHub Integration & Feedback Loop

typescript
interface GitHubIntegration { postReview(pr: PR, review: Review): Promise<void>; updateCheckStatus(pr: PR, status: Status): Promise<void>; learnFromDismissals(pr: PR): Promise<void>; }

Deliverables:

  • PR comment posting
  • Check status integration
  • Dismissal tracking (learn what humans disagree with)
  • Quality dashboard (metrics display)

Success Criteria:

  • Agent reviews PRs within 60 seconds
  • False positive rate < 30% (learn from dismissals)
  • Captures feedback for continuous improvement

Risk Mitigation:

  • Start with low-risk repos only
  • Human approval required for "blocking" comments
  • Easy disable switch per repo

Phase 3: Testing Integration (Week 5)

Goal: Augment testing with AI capabilities

typescript
interface TestingAgent { selectTests(changes: Diff, allTests: Test[]): Promise<Test[]>; analyzeFailure(failure: TestFailure): Promise<Diagnosis>; generateTest(code: Function, spec: Spec): Promise<Test>; }

Deliverables:

  • Risk-based test selector (change impact analysis)
  • Failure analyzer with root cause suggestions
  • Test gap identification (untested changes)
  • Integration with Jest/Vitest

Quick Win:

typescript
// Immediate value: smarter test failure messages const diagnosis = await analyzeFailure(testFailure); // Output: "This test fails because the mock wasn't reset between tests. // Add beforeEach(() => jest.clearAllMocks())"

Phase 4: CI/CD Pipeline (Week 6)

Goal: Connect agents to deployment pipeline

typescript
interface CICDIntegration { onBuildComplete(build: Build): Promise<void>; onTestComplete(results: TestResults): Promise<void>; onDeployRequest(deploy: DeployConfig): Promise<Decision>; }

Deliverables:

  • GitHub Actions integration
  • Build failure analysis
  • Pre-deploy risk assessment
  • Basic deployment check (synthetic health endpoint)

Scope Limitation:

  • No auto-rollback in MVP (alert only)
  • Manual approval for production deploys
  • Focus on analysis/reporting, not automation

Phase 5: SDLC Orchestrator MVP (Weeks 7-8)

Goal: Coordinate multiple agents for end-to-end flow

typescript
interface SDLCOrchestrator { // MVP: Sequential execution only async execute(requirements: string): Promise<void> { const design = await planner.createDesign(requirements); const code = await implementer.implement(design); const reviewed = await reviewer.review(code); const tested = await tester.test(reviewed); await deployer.deploy(tested); // with human approval } }

Deliverables:

  • Shared context bus (in-memory MVP)
  • Checkpoint system (save/restore state)
  • Sequential orchestration flow
  • Human approval gates
  • Basic telemetry/metrics

Explicitly NOT Included (Post-MVP):

  • Parallel agent execution
  • Autonomous deployment
  • Self-directed planning
  • Multi-repo coordination

5. Risk Assessment by Component

Component: Memory & Feedback

RiskLikelihoodImpactMitigation
Memory bloatMediumMediumLRU pruning, importance scoring
Noise accumulationHighMediumConfidence thresholds, human validation
Privacy concernsLowHighNo code stored, only patterns

Component: Code Review Agent

RiskLikelihoodImpactMitigation
False positivesHighMediumConfidence scoring, learn from dismissals
LLM cost explosionMediumHighCaching, selective review (high-risk only)
Security (leaking code)LowCriticalLocal LLM option, no code to 3rd party
Review fatigueMediumMediumBatching, severity filtering

Component: Testing Agent

RiskLikelihoodImpactMitigation
Test selection misses bugMediumCriticalBaseline smoke tests always run
Flaky test misclassificationMediumMediumMultiple runs before classification
Generated tests are low valueHighLowHuman review before merging

Component: CI/CD Integration

RiskLikelihoodImpactMitigation
Auto-deploy breaks prodLowCriticalNo auto-deploy in MVP, human gates
Pipeline latency increaseMediumMediumParallel execution, caching
Rollback decision errorsMediumHighConservative thresholds, human override

Component: SDLC Orchestrator

RiskLikelihoodImpactMitigation
Runaway loops/costMediumHighMax iteration limits, cost budgets
Poor quality codeMediumHighHuman review gates, quality gates
Loss of contextMediumMediumCheckpoint system, state persistence
Security vulnerabilitiesMediumCriticalSecurity scanning, dependency checks

6. Risk Mitigation Strategies

Strategy 1: Gradual Automation Ladder

Level 0: Human only (current state)
    ↓
Level 1: AI suggests, human decides (Weeks 3-4)
    ↓
Level 2: AI acts, human reviews (Weeks 5-6)
    ↓
Level 3: AI acts, human notified (Weeks 7-8)
    ↓
Level 4: Full autonomy (Post-MVP)

Never skip levels. Each level requires metrics proving safety.

Strategy 2: Circuit Breakers (Everywhere)

typescript
interface SafetyControls { maxIterations: 10; maxCostPerTask: 5.00; // USD maxTimePerTask: 300000; // 5 minutes requireHumanApproval: [ 'productionDeploy', 'securityChanges', 'breakingChanges' ]; autoRollbackTriggers: { errorRate: 0.01; latency: 1.5; // 1.5x baseline }; }

Strategy 3: Observable Everything

  • Every decision logged with rationale
  • Every action attributed to an agent
  • Cost tracking per execution
  • Quality metrics trended over time

Strategy 4: Human-in-the-Loop Defaults

typescript
// Default configuration requires human approval const defaultConfig = { autoFix: false, // Suggest only autoDeploy: false, // Require approval autoMerge: false, // Human decides learningThreshold: 0.9, // High confidence required };

7. Success Metrics

Technical Metrics

MetricBaselineWeek 4 TargetWeek 8 Target
PR review time4 hours1 minute1 minute
Review coverage0%100%100%
False positive rateN/A<30%<20%
Test failure analysis accuracy0%60%75%
System availabilityN/A99%99.5%

Business Metrics

MetricMeasurement
Developer time savedHours of review/test analysis automated
Defects caught pre-mergeIssues found by AI review
Lead time reductionCommit to deploy time
Cost per changeLLM API costs tracked

8. Post-MVP Roadmap (Months 3-6)

Q2 Priorities

  1. Multi-Agent Parallelization - Multiple implementer agents working on different modules
  2. Advanced Memory - Knowledge graphs, cross-session learning
  3. Self-Healing - Auto-fix common issues without human intervention
  4. Cross-Repo Intelligence - Learn patterns across multiple codebases

Q3+ Vision

  1. Autonomous Planning - Agents break down requirements without human help
  2. Natural Language Requirements - Stakeholders describe features in plain English
  3. Continuous Self-Improvement - System improves its own prompts and strategies
  4. Ecosystem Integration - Jira, Slack, Notion, Figma integration

9. Appendix: Implementation Checklist

Week 1

  • SQLite schema for memory store
  • Error taxonomy definition
  • Event capture pipeline
  • Basic pattern matching

Week 2

  • Reflection engine
  • Gene/Capsule data model
  • Confidence scoring
  • Human approval workflow

Week 3

  • PR webhook handler
  • Diff parser
  • Static analysis integration
  • LLM review prompts

Week 4

  • GitHub comment posting
  • Check status integration
  • Dismissal tracking
  • Quality dashboard

Week 5

  • Test selector
  • Failure analyzer
  • Test gap detection
  • Jest/Vitest integration

Week 6

  • GitHub Actions integration
  • Build failure analysis
  • Pre-deploy risk assessment
  • Synthetic health checks

Week 7

  • Shared context bus
  • Checkpoint system
  • Sequential orchestration
  • Approval gates

Week 8

  • End-to-end flow testing
  • Telemetry/metrics
  • Documentation
  • Demo preparation

10. Decision Log

DateDecisionRationale
2026-02-06Start with Feedback LoopsFoundation for all learning; enables continuous improvement
2026-02-06Build Code Review first vertical sliceHigh visibility, clear value, manageable scope
2026-02-06Sequential orchestration in MVPParallel coordination adds complexity; prove sequential first
2026-02-06No auto-deploy in MVPSafety first; human approval gates required
2026-02-06SQLite for memory storageSimple, portable, no external dependencies
2026-02-06TypeScript/JavaScript focusPrimary use case; expand to other languages post-MVP

End of Roadmap Document